1. Iodine reacts with concentrated HNO$_3$ to yield Y along with other products. The oxidation state of iodine in Y, is :-
 (1) 5 (2) 3 (3) 1 (4) 7
Ans. (1)
Sol. I$_2$ + 10HNO$_3$ \rightarrow 2HIO$_3$ + 10NO$_2$ + 4H$_2$O
In HIO$_3$ oxidation state of iodine is +5.

2. The major product of the following reaction is:
 (1) CHO
 (2) HO
 (3) CHO
 (4) CH=NH
Ans. (3)
Sol. DIBAL-H will reduce cyanides & esters to aldehydes.

3. In a chemical reaction, A + 2B \rightarrow 2C + D, the initial concentration of B was 1.5 times of the concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant(K) for the aforesaid chemical reaction is :
 (1) 16 (2) 4 (3) 1 (4) $\frac{1}{4}$
Ans.(2)
Sol. A + 2B \rightarrow 2C + D
t=0 a$_0$ 1.5a$_0$ 0 0
t = t$_{eq}$ a$_0$ - x 1.5a$_0$ - 2x 2x x
At equilibrium [A] = [B]
a$_0$ - x = 1.5a$_0$ - 2x \Rightarrow x = 0.5a$_0$
t = t$_{eq}$ 0.5a$_0$ 0.5a$_0$ a$_0$ 0.5a$_0$

 K$_C$ = [C]$_{eq}^2$ [D]$_{eq}$
 [A] [B]$_{eq}^2$
 = $\frac{(0.5a_0)^2 (0.5a_0)}{(0.5a_0) (0.5a_0)} = 4$

4. Two solids dissociate as follows
A(s) \rightleftharpoons B(g) + C(g) ; K$_{p1}$ = x atm2
D(s) \rightleftharpoons C(g) + E(g) ; K$_{p2}$ = y atm2
The total pressure when both the solids dissociate simultaneously is :
 (1) $x^2 + y^2$ atm (2) $x^2 + y^2$ atm
 (3) $2(\sqrt{x+y})$ atm (4) $\sqrt{x+y}$ atm
Ans. (3)
Sol. A(s)\rightleftharpoonsB(g) + C(g) K$_{p1}$ = x atm2
 P$_1$ P$_1$
 x=P$_1$(P$_1$ + P$_2$) ...(1)
D(s)\rightleftharpoonsC(g) + E(g) K$_{p2}$ = y P$_C$ P$_E$
 P$_2$ P$_2$
 y = (P$_1$+P$_2$) (P$_2$) ...(2)
Adding (1) and (2)
x + y = (P$_1$ + P$_2$)2
Now total pressure
P$_T$ = P$_C$ + P$_B$ + P$_E$
 = (P$_1$ + P$_2$) + P$_1$ + P$_2$ = 2(P$_1$ + P$_2$)
P$_T$ = 2($\sqrt{x+y}$)

5. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous solution of Y. If molecular weight of X is A, then molecular weight of Y is :-
 (1) A (2) 3A
 (3) 4A (4) 2A
Ans. (2)
For same freezing point, molality of both solution should be same.

\[m_x = m_y \]

\[4 \times 1000 = \frac{12 \times 1000}{96 \times M_x} = \frac{88 \times M_y} \]

or, \[M_y = \frac{96 \times 12}{4 \times 88} = 3.27 \text{ Å} \]

Closest option is 3Å.

6. Poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV) is a copolymer of_.
 (1) 3-hydroxybutanoic acid and 4-hydroxypentanoic acid
 (2) 2-hydroxybutanoic acid and 3-hydroxypentanoic acid
 (3) 3-hydroxybutanoic acid and 2-hydroxypentanoic acid
 (4) 3-hydroxybutanoic acid and 3-hydroxypentanoic acid

Ans. (4)

Sol. PHBV is a polymer of 3-hydroxybutanoic acid and 3-Hydroxy pentanoic acid.

7. Among the following four aromatic compounds, which one will have the lowest melting point?

 (1)
 (2)
 (3)
 (4)

Ans. (1)

Sol. M.P. of Napthalene = 80°C

8. \(\text{CH}_3\text{CH}_2\text{C}–\text{CH}_3 \) cannot be prepared by :

 (1) \(\text{HCHO} + \text{PhCH(CHOH)CH}_2\text{MgX} \)
 (2) \(\text{PhCOCH}_2\text{CH}_3 + \text{CH}_3\text{MgX} \)
 (3) \(\text{PhCOCH}_3 + \text{CH}_3\text{CH}_2\text{MgX} \)
 (4) \(\text{CH}_3\text{CH}_2\text{COCH}_3 + \text{PhMgX} \)

Ans. (1)

Sol. \(\text{H} = \text{C}–\text{H} + \text{Ph–CH}–\text{CH}_2\text{MgX} \)

\[\text{Ph–CH}–\text{CH}_2–\text{CH}_2–\text{OH} \]

\(\text{CH}_3 \)

9. The volume of gas A is twice than that of gas B. The compressibility factor of gas A is thric e than that of gas B at same temperature. The pressures of the gases for equal number of moles are :

 (1) \(2P_A = 3P_B \)
 (2) \(P_A = 3P_B \)
 (3) \(P_A = 2P_B \)
 (4) \(3P_A = 2P_B \)

Ans. (1)

Sol. \[V_A = 2V_B \]

\[Z_A = 3Z_B \]

\[\frac{P_A \cdot V_A}{n_A \cdot RT_A} = \frac{3 \cdot P_B \cdot V_B}{n_B \cdot RT_B} \]

\[2P_A = 3P_B \]

10. The element with \(Z = 120 \) (not yet discovered) will be an/a :

 (1) transition metal
 (2) inner-transition metal
 (3) alkaline earth metal
 (4) alkali metal

Ans. (3)

Sol. \(Z = 120 \)

Its general electronic configuration may be represented as [Nobel gas] ns\(^2\), like other alkaline earth metals.
11. Decomposition of X exhibits a rate constant of 0.05 \(\mu \text{g/year} \). How many years are required for the decomposition of 5 \(\mu \text{g} \) of X into 2.5 \(\mu \text{g} \)?

(1) 50 (2) 25 (3) 20 (4) 40

Ans. (1)

Sol. Rate constant \(K = 0.05 \mu \text{g/year} \) means zero order reaction

\[
\frac{1}{2} \ln 2 = \frac{5 \mu \text{g}}{2 \times 0.05 \mu \text{g/year}} = 50 \text{ years}
\]

12. The major product of the following reaction is:

CH\(_3\)O\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)

(1) \(\text{Cl}_2\text{CCl}_4\) (2) \(\text{AlCl}_3\text{(anhyd.)}\)

(1) CH\(_3\)O\(\text{Cl}\)

(2) CH\(_3\)O\(\text{Cl}\)

(3) CH\(_3\)O\(\text{Cl}\)

(4) CH\(_3\)O\(\text{Cl}\)

Ans. (4)

Sol. CH\(_3\)O\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)\(\text{Cl}\)

\[
\text{MeO} + \text{EAS} \rightarrow \text{MeO} + \text{Cl}^+ + \text{H}^+
\]

13. Given

<table>
<thead>
<tr>
<th>Gas</th>
<th>H(_2)</th>
<th>CH(_3)</th>
<th>CO(_2)</th>
<th>SO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Temperature/K</td>
<td>33</td>
<td>190</td>
<td>304</td>
<td>630</td>
</tr>
</tbody>
</table>

On the basis of data given above, predict which of the following gases shows least adsorption on a definite amount of charcoal?

(1) H\(_2\) (2) CH\(_4\) (3) SO\(_2\) (4) CO\(_2\)

Ans. (1)

Sol. Smaller the value of critical temperature of gas, lesser is the extent of adsorption.

so least adsorbed gas is H\(_2\)

14. For diatomic ideal gas in a closed system, which of the following plots does not correctly describe the relation between various thermodynamic quantities?

(1) \(C_v\) vs T (2) \(C_p\) vs P

(3) \(C_v\) vs T (4) \(U\) vs T

Ans. (2)

Sol. At higher temperature, rotational degree of freedom becomes active.

\[C_p = \frac{7}{2}R\] (Independent of P)

\[C_v = \frac{5}{2}R\] (Independent of V)

Variation of \(U\) vs T is similar as \(C_v\) vs T.

15. The standard electrode potential \(E^0\) and its temperature coefficient \(\left(\frac{dE^0}{dT}\right)\) for a cell are 2V and \(-5 \times 10^{-4}\) VK\(^{-1}\) at 300 K respectively. The cell reaction is

\[\text{Zn}(s) + \text{Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq)} + \text{Cu}(s)\]

The standard reaction enthalpy \(\Delta H^\circ\) at 300 K in kJ mol\(^{-1}\) is,

\[\text{[Use } R = 8jK^{-1}\text{ mol}^{-1} \text{ and } F = 96,000 \text{ Cmol}^{-1}\text{]}\]

(1) -412.8 (2) -384.0

(3) 206.4 (4) 192.0

Ans. (1)

Sol. Chiefly NO\(_2\), O\(_3\) and hydrocarbon are responsible for build up smog.

Click Here for JEE Mains & Advanced Free Online Test Practice

16. The molecule that has minimum/no role in the formation of photochemical smog, is:
 (1) CH₂ = O
 (2) N₂
 (3) O₃
 (4) NO
 Ans. (2)
 Sol. Chiefly NO₂, O₃ and hydrocarbon are responsible for build up smog.

17. In the Hall-Heroult process, aluminium is formed at the cathode. The cathode is made out of:
 (1) Platinum
 (2) Carbon
 (3) Pure aluminium
 (4) Copper
 Ans. (2)
 Ans. (2) Carbon
 Sol. In the Hall-Heroult process the cathode is made of carbon.

18. Water samples with BOD values of 4 ppm and 18 ppm, respectively, are:
 (1) Highly polluted and Clean
 (2) Highly polluted and Highly polluted
 (3) Clean and Highly polluted
 (4) Clean and Clean
 Ans. (3)
 Sol. Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more.

19. In the following reactions, products A and B are:
 \[\begin{align*}
 &\text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \quad \text{dil NaOH} \rightarrow [A] \\
 &\text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \quad \underset{\Delta}{\text{H}_3\text{O}^+} \rightarrow [B] \\
 &\text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \\
 \end{align*} \]
 \[\text{H}_3\text{C} - \text{COOH} - \text{CH}_3 ; \quad \text{B} = \text{H}_3\text{C} - \text{COOH} - \text{CH}_3
 \]
 (1) A = \[
 \begin{array}{c}
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \\
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3
 \end{array}
 \]
 (2) A = \[
 \begin{array}{c}
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \\
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3
 \end{array}
 \]
 (3) A = \[
 \begin{array}{c}
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \\
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3
 \end{array}
 \]
 (4) A = \[
 \begin{array}{c}
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3 \\
 \text{H}_3\text{C} - \text{COOH} - \text{CH}_3
 \end{array}
 \]
 Ans. (4)
 Sol.

20. What is the work function of the metal if the light of wavelength 4000 Å generates photoelectrons of velocity \(6 \times 10^5\) m/s form it?
 (Mass of electron = \(9 \times 10^{-31}\) kg
 Velocity of light = \(3 \times 10^8\) m/s
 Planck’s constant = \(6.626 \times 10^{-34}\) Js
 Charge of electron = \(1.6 \times 10^{-19}\) JeV⁻¹)
 (1) 0.9 eV
 (2) 4.0 eV
 (3) 2.1 eV
 (4) 3.1 eV
 Ans. (3)
Sol. \(h\nu = \phi + \frac{1}{2}mv^2 \)

\[
\frac{1}{2}mv^2 = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)
\]

\(h\nu = \phi + \frac{1}{2}mv^2 \)

\[
\phi = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4000 \times 10^{-10}} - \frac{1}{2} \times 9 \times 10^{-31} \times (6 \times 10^8)^2
\]

\(\phi = 3.35 \times 10^{-19} \text{ J} \Rightarrow \phi \geq 2.1 \text{ eV} \)

21. Among the following compounds most basic amino acid is:
 (1) Lysine
 (2) Asparagine
 (3) Serine
 (4) Histidine

Ans. (4)

Sol. Histidine

22. The metal d-orbitals that are directly facing the ligands in \(K_3[Co(CN)_6] \) are:
 (1) \(d_{x^2-y^2} \) and \(d_z^2 \)
 (2) \(d_{xy} \), \(d_{xz} \) and \(d_{yz} \)
 (3) \(d_{xy} \) and \(d_{x^2-y^2} \)
 (4) \(d_{x^2-y^2} \) and \(d_z^2 \)

Ans. (4)

Sol. \(K_3[Co(CN)_6] \)

\(Co^{3+} \rightarrow [Ar]^{18}3d^6 \)

23. The hardness of a water sample (in terms of equivalents of \(CaCO_3 \)) containing \(10^{-3} \text{ M CaSO}_4 \) is:
 (molar mass of \(\text{CaSO}_4 = 136 \) g mol\(^{-1}\))
 (1) 100 ppm
 (2) 50 ppm
 (3) 10 ppm
 (4) 90 ppm

Ans. (1)

Sol. ppm of \(CaCO_3 \)

\((10^{-3} \times 10^3) \times 100 = 100 \text{ ppm}\)

24. The correct order for acid strength of compounds \(CH≡CH, CH_3-C≡CH \) and \(CH_2=CH_2 \) is as follows:
 (1) \(CH≡CH > CH_2 = CH_2 > CH_3-C≡CH \)
 (2) \(HC≡CH > CH_3-C≡CH > CH_2 = CH_2 \)
 (3) \(CH_3-C≡CH > CH_2 = CH_2 > HC≡CH \)
 (4) \(CH_3-C≡CH > CH ≡ CH > CH_2 = CH_2 \)

Ans. (2)

Sol. \(CH≡CH > CH_3-C≡CH > CH_2=CH_2 \)

(ACIDIC STRENGTH ORDER)

25. \(Mn_2(CO)_{10} \) is an organometallic compound due to the presence of:
 (1) \(Mn-Mn \) bond
 (2) \(Mn-C \) bond
 (3) \(Mn-O \) bond
 (4) \(C-O \) bond

Ans. (2)

Sol. Compounds having at least one bond between carbon and metal are known as organometallic compounds.

\[\text{CO} \quad \text{CO} \quad \text{CO} \]
\[\text{OC} \quad \text{Mn} \quad \text{Mn} \quad \text{CO} \]
\[\text{CO} \quad \text{CO} \quad \text{CO} \]

26. The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is:

(1) \(B < A < D < C \)
(2) \(B < A < C < D \)
(3) \(A < C < D < B \)
(4) \(A < B < C < D \)

Ans. (2)
27. The pair of metal ions that can give a spinonly magnetic moment of 3.9 BM for the complex [M(H₂O)₆]Cl₂ is:
(1) Cr²⁺ and Mn²⁺ (2) V²⁺ and Co²⁺
(3) V²⁺ and Fe²⁺ (4) Co²⁺ and Fe²⁺
Ans. (2)

27. Ans. (2) V²⁺ and Co²⁺

28. In the following reaction
Aldehyde + Alcohol → HCl → Acetal
Aldehyde Alcohol
HCHO t-BuOH
CH₃CHO MeOH
The best combinations is:
(1) HCHO and MeOH
(2) HCHO and t-BuOH
(3) CH₃CHO and MeOH
(4) CH₃CHO and t-BuOH
Ans. (1)

29. 50 mL of 0.5 M oxalic acid is needed to neutralize 25 mL of sodium hydroxide solution. The amount of NaOH in 50 mL of the given sodium hydroxide solution is:
(1) 40 g (2) 20 g (3) 80 g (4) 10 g

BONUS

30. A metal on combustion in excess air forms X, X upon hydrolysis with water yields H₂O and O₂ along with another product. The metal is:
(1) Rb (2) Na (3) Mg (4) Li
Ans. (1)

Sol. \[\text{H}_2\text{C}_2\text{O}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{C}_2\text{O}_4 + 2\text{H}_2\text{O} \]

rate \(\propto \frac{1}{\text{steric crowding of aldehyde}} \)
t-butanol can show formation of carbocation in acidic medium.

Click Here for CBSE NEET & AIIMS Free Online Test Practice