1. Let \(f \) be a differentiable function from \(\mathbb{R} \) to \(\mathbb{R} \) such that \(|f(x) - f(y)| \leq 2|x - y|^{3/2} \), for all \(x, y \in \mathbb{R} \). If \(f(0) = 1 \) then \(\int_0^1 f^2(x) \, dx \) is equal to

(1) 0 (2) \(\frac{1}{2} \) (3) 2 (4) 1

Ans. (4)

Sol. \[|f(x) - f(y)| < 2|x - y|^{3/2} \]

divide both sides by \(|x - y|^{1/2} \)

\[\frac{f(x) - f(y)}{x - y} \leq 2|x - y| \]

apply limit \(x \to y \)

\[|f'(y)| < 0 \]

\(\Rightarrow \) \(f'(y) = 0 \)

\(\Rightarrow \) \(f(y) = c \)

\(\Rightarrow \) \(f(x) = 1 \)

\[\int_0^1 f^2(x) \, dx = 1 \]

2. If \[\int_0^{\frac{\pi}{2}} \frac{\tan \theta}{\sqrt{2k \sec \theta}} \, d\theta = 1 - \frac{1}{\sqrt{2}} \] \((k > 0)\), then the value of \(k \) is:

(1) 2 (2) \(\frac{1}{2} \) (3) 4 (4) 1

Ans. (1)

Sol. \[\frac{1}{\sqrt{2k}} \int_0^{\frac{\pi}{2}} \frac{\tan \theta}{\sqrt{\sec \theta}} \, d\theta = \frac{1}{\sqrt{2k}} \int_0^{\frac{\pi}{2}} \frac{\sin \theta}{\cos \theta} \, d\theta = -\frac{\sqrt{2}}{2k} \left(\frac{1}{\sqrt{2}} - 1 \right) \]

given it is \(1 - \frac{1}{\sqrt{2}} \) \(\Rightarrow \) \(k = 2 \)

3. The coefficient of \(t^4 \) in the expansion of \(\left(\frac{1-t^6}{1-t} \right)^3 \) is

(1) 12 (2) 15 (3) 10 (4) 14

Ans. (2)

Sol. \((1-t^6)^3 (1-t)^{-3} \)

\((1-t^6) - 3t^6 + 3t^{12} (1-t)^{-3} \)

\[\Rightarrow \] coefficient of \(t^4 \) in \((1-t)^{-3} \) is

\[3^{4+1}C_4 = 6C_2 = 15 \]

4. For each \(x \in \mathbb{R} \), let \([x]\) be the greatest integer less than or equal to \(x \). Then

\[\lim_{x \to 0^+} x \left(\frac{[x] + [x]}{x} \right) \sin \frac{\pi}{x} \]

is equal to

(1) \(-\sin 1\) (2) 0 (3) 1 (4) \(\sin 1\)

Ans. (1)

Sol. \[\lim_{x \to 0^+} x \left(\frac{[x] + [x]}{x} \right) \sin \frac{\pi}{x} = -\sin 1 \]

5. If both the roots of the quadratic equation \(x^2 - mx + 4 = 0 \) are real and distinct and they lie in the interval \([1, 5]\), then \(m \) lies in the interval:

(1) \((4, 5)\) (2) \((3, 4)\) (3) \((5, 6)\) (4) \((-5, -4)\)

Ans. (Bonus/1)

Sol. \(x^2 - mx + 4 = 0 \)

\(\alpha, \beta \in [1, 5] \)

(1) \(D > 0 \) \(\Rightarrow \) \(m^2 - 16 > 0 \)

\(\Rightarrow m \in (-\infty, -4) \cup (4, \infty) \)

(2) \(f(1) \geq 0 \) \(\Rightarrow \) \(5 - m \geq 0 \) \(\Rightarrow m \in (-\infty, 5] \)

(3) \(f(5) \geq 0 \) \(\Rightarrow \) \(29 - 5m \geq 0 \) \(\Rightarrow m \in \left(-\infty, \frac{29}{5}\right] \)

(4) \(1 < \frac{-b}{2a} < 5 \) \(\Rightarrow 1 < \frac{m}{2} < 5 \) \(\Rightarrow m \in (2, 10) \)

\(\Rightarrow m \in (4, 5) \)

No option correct : Bonus

* If we consider \(\alpha, \beta \in (1, 5) \) then option (1) is correct.
6. If
\[A = \begin{bmatrix} e^t & e^{-t} \cos t & e^{-t} \sin t \\ e^t & -e^{-t} \cos t - e^{-t} \sin t & -e^{-t} \sin t + e^{-t} \cos t \\ 2e^{-t} \sin t & -2e^{-t} \cos t & 1 \end{bmatrix} \]

Then A is:

(1) Invertible only if \(t = \frac{\pi}{2} \)

(2) not invertible for any \(t \in \mathbb{R} \)

(3) invertible for all \(t \in \mathbb{R} \)

(4) invertible only if \(t = \pi \)

Ans. (3)

Sol.
\[|A| = e^{-t} \begin{vmatrix} 1 & \cos t & \sin t \\ 1 & -\cos t - \sin t & -\sin t + \cos t \\ 2\sin t & 2\cos t & 1 \end{vmatrix} \]
\[= e^{-t} [5 \cos^2 t + 5 \sin^2 t] \quad \forall \ t \in \mathbb{R} \]
\[= 5e^{-t} \neq 0 \quad \forall \ t \in \mathbb{R} \]

7. The area of the region
\[A = \left\{ (x, y): 0 \leq y \leq \sqrt{x} + 1 \text{ and } -1 \leq x \leq 1 \right\} \]
in sq. units, is:

(1) \(\frac{2}{3} \)
(2) \(\frac{1}{3} \)
(3) 2
(4) \(\frac{4}{3} \)

Ans. (3)

Sol. The graph is as follows

[Diagram]

\[\int_{-1}^{1} (\sqrt{x} + 1) \, dx = 2 \]

8. Let \(z_0 \) be a root of the quadratic equation, \(x^2 + x + 1 = 0 \). If \(z = 3 + 6iz_0^8 - 3iz_0^{10} \), then \(\arg z \) is equal to:

(1) \(\frac{\pi}{4} \)
(2) \(\frac{\pi}{3} \)
(3) 0
(4) \(\frac{\pi}{6} \)

Ans. (1)

Sol. \(z_0 = \omega \) or \(\omega^2 \) (where \(\omega \) is a non-real cube root of unity)
\[z = 3 + 6i(\omega^8) - 3i(\omega^{10}) \]
\[= 3 + 3i \]
\[\Rightarrow \arg z = \frac{\pi}{4} \]

9. Let \(\vec{a} = \hat{i} + \hat{j} + \sqrt{2k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + \sqrt{2k} \) and \(\vec{c} = 5\hat{i} + \hat{j} + \sqrt{2k} \) be three vectors such that the projection vector of \(\vec{b} \) on \(\vec{a} \) is \(\vec{a} \). If \(\vec{a} + \vec{b} \) is perpendicular to \(\vec{c} \), then \(|\vec{b}| \) is equal to:

(1) \(\sqrt{22} \)
(2) 4
(3) \(\sqrt{32} \)
(4) 6

Ans. (4)

Sol. Projection of \(\vec{b} \) on \(\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = |\vec{a}| \)
\[\Rightarrow b_1 + b_2 = 2 \quad \ldots (1) \]
and \((\vec{a} + \vec{b}) \perp \vec{c} \Rightarrow (\vec{a} + \vec{b}) \cdot \vec{c} = 0 \)
\[\Rightarrow 5b_1 + b_2 = -10 \quad \ldots (2) \]
from (1) and (2) \(b_1 = -3 \) and \(b_2 = 5 \)
then \(|\vec{b}| = \sqrt{b_1^2 + b_2^2 + 2} = 6 \)

10. Let \(A(4, -4) \) and \(B(9, 6) \) be points on the parabola, \(y^2 + 4x \). Let \(C \) be chosen on the arc \(AOB \) of the parabola, where \(O \) is the origin, such that the area of \(\Delta ACB \) is maximum. Then, the area (in sq. units) of \(\Delta ACB \), is:

(1) \(31 \frac{3}{4} \)
(2) 32
(3) \(30 \frac{1}{2} \)
(4) \(31 \frac{1}{4} \)

Ans. (4)
11. The logical statement
\[\neg (\neg p \lor q) \lor (p \land r) \land (\neg q \land r) \] is equivalent to:
(1) \((p \land r) \land \neg q\)
(2) \((\neg p \land \neg q) \land r\)
(3) \(\neg p \lor r\)
(4) \((p \land \neg q) \lor r\)
Ans. (1)

Sol.
\[s[\neg (\neg p \lor q) \land (p \land r)] \land (\neg q \land r) \]
\[= [(p \land \neg q) \lor (p \land r)] \land (\neg q \land r) \]
\[= p \land (\neg q \land r) \]
\[= (p \land r) \land \neg q \]

12. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is:
(1) \(\frac{26}{49}\)
(2) \(\frac{32}{49}\)
(3) \(\frac{27}{49}\)
(4) \(\frac{21}{49}\)
Ans. (2)

Sol. \(E_1 \) : Event of drawing a Red ball and placing a green ball in the bag
\(E_2 \) : Event of drawing a green ball and placing a red ball in the bag
\(E \) : Event of drawing a red ball in second draw

\[P(E) = P(E_1) \times P\left(\frac{E}{E_1}\right) + P(E_2) \times P\left(\frac{E}{E_2}\right) \]
\[= \frac{5}{7} \times \frac{4}{7} + \frac{2}{7} \times \frac{6}{7} = \frac{32}{49} \]

13. If \(0 \leq x < \frac{\pi}{2}\), then the number of values of \(x\) for which \(\sin x - \sin 2x + \sin 3x = 0\), is:
(1) 2
(2) 1
(3) 3
(4) 4
Ans. (1)

Sol. \(\sin x - \sin 2x + \sin 3x = 0\)
\[\Rightarrow (\sin x + \sin 3x) - \sin 2x = 0 \]
\[\Rightarrow 2\sin x \cos x - \sin 2x = 0 \]
\[\Rightarrow \sin 2x(2 \cos x - 1) = 0 \]
\[\Rightarrow \sin 2x = 0 \text{ or } \cos x = \frac{1}{2} \]
\[\Rightarrow x = 0, \frac{\pi}{3} \]

14. The equation of the plane containing the straight line \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\) and perpendicular to the plane containing the straight lines
\[\frac{x}{3} = \frac{y}{4} = \frac{z}{2} \text{ and } \frac{x}{4} = \frac{y}{2} = \frac{z}{3} \] is:
(1) \(x + 2y - 2z = 0\)
(2) \(x - 2y + z = 0\)
(3) \(5x + 2y - 4z = 0\)
(4) \(3x + 2y - 3z = 0\)
Ans. (2)
Vector along the normal to the plane containing the lines
\[\frac{x}{3} - \frac{y}{4} = \frac{z}{2} \] and \[\frac{x}{4} - \frac{y}{2} = \frac{z}{3} \]
is \(8\hat{i} - \hat{j} - 10\hat{k} \)
vector perpendicular to the vectors \(2\hat{i} + 3\hat{j} + 4\hat{k} \)
and \(8\hat{i} - \hat{j} - 10\hat{k} \) is \(26\hat{i} - 52\hat{j} + 26\hat{k} \)
so, required plane is
\[26x - 52y + 26z = 0 \]
\[x - 2y + z = 0 \]

15. Let the equations of two sides of a triangle be 3x – 2y + 6 = 0 and 4x + 5y – 20 = 0. If the orthocentre of this triangle is at (1,1), then the equation of its third side is :
(1) 122y – 26x – 1675 = 0
(2) 26x + 61y + 1675 = 0
(3) 122y + 26x + 1675 = 0
(4) 26x – 122y – 1675 = 0
Ans. (4)

16. If \(x = 3 \tan t \) and \(y = 3 \sec t \), then the value of \(\frac{dy}{dx} \) at \(t = \frac{\pi}{4} \), is:
(1) \(\frac{3}{2\sqrt{2}} \)
(2) \(\frac{1}{3\sqrt{2}} \)
(3) \(\frac{1}{6} \)
(4) \(\frac{1}{6\sqrt{2}} \)
Ans. (4)

17. If \(x = \sin^{-1}(\sin 10) \) and \(y = \cos^{-1}(\cos 10) \), then \(y \approx x \) is equal to:
(1) \(\pi \)
(2) \(7\pi \)
(3) \(0 \)
(4) \(10 \)
Ans. (1)

18. If the lines \(x = ay+b \), \(z = cy+d \) and \(x=a'z + b' \), \(y = c'z + d' \) are perpendicular, then:
(1) \(cc' + a + a' = 0 \)
(2) \(aa' + c + c' = 0 \)
(3) \(ab' + bc' + 1 = 0 \)
(4) \(bb' + cc' + 1 = 0 \)
Ans. (2)

19. The number of all possible positive integral values of \(\alpha \) for which the roots of the quadratic equation, \(6x^2 – 11x + \alpha = 0 \) are rational numbers is :
(1) \(2 \)
(2) \(5 \)
(3) \(3 \)
(4) \(4 \)
Ans. (3)

Given both the lines are perpendicular
\(\Rightarrow a' + c' + c = 0 \)

19. The number of all possible positive integral values of \(\alpha \) for which the roots of the quadratic equation, \(6x^2 – 11x + \alpha = 0 \) are rational numbers is :
(1) \(2 \)
(2) \(5 \)
(3) \(3 \)
(4) \(4 \)
Ans. (3)

"
20. A hyperbola has its centre at the origin, passes through the point (4,2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is:

(1) \(\frac{2}{\sqrt{3}} \)
(2) \(\frac{3}{2} \)
(3) \(\sqrt{3} \)
(4) 2

Ans. (1)

Sol.

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

\[2a = 4 \quad a = 2 \]

\[\frac{x^2}{4} - \frac{y^2}{b^2} = 1 \]

Passes through (4,2)

\[4 - \frac{4}{b^2} = 1 \Rightarrow b^2 = \frac{4}{3} \Rightarrow e = \frac{2}{\sqrt{3}} \]

21. Let \(A = \{ x \in \mathbb{R} : x \text{ is not a positive integer} \} \)

Define a function \(f : A \rightarrow \mathbb{R} \) as \(f(x) = \frac{2x}{x-1} \) then \(f \) is

(1) injective but not surjective
(2) not injective
(3) surjective but not injective
(4) neither injective nor surjective

Ans. (1)

Sol.

\[f(x) = 2 \left(1 + \frac{1}{x-1} \right) \]

\[f'(x) = -\frac{2}{(x-1)^2} \]

\[\Rightarrow f \text{ is one-one but not onto} \]

22. If \(f(x) = \int \frac{5x^8 + 7x^6}{x^2 + 1 + 2x^7} \, dx \), then the value of \(f(1) \) is:

(1) \(-\frac{1}{2} \)
(2) \(\frac{1}{2} \)
(3) \(-\frac{1}{4} \)
(4) \(\frac{1}{4} \)

Ans. (4)

Sol.

\[\int \frac{5x^8 + 7x^6}{x^2 + 1 + 2x^7} \, dx = \frac{1}{2} \cdot \frac{1}{x^5} + \frac{1}{x^3} + C \]

As \(f(0) = 0 \), \(f(x) = \frac{x^7}{2x^7 + x^2 + 1} \)

\[f(1) = \frac{1}{4} \]

23. If the circles \(x^2 + y^2 - 16x - 20y + 164 = r^2 \) and \((x-4)^2 + (y-7)^2 = 36 \) intersect at two distinct points, then:

(1) \(0 < r < 1 \)
(2) \(1 < r < 11 \)
(3) \(r > 11 \)
(4) \(r = 11 \)

Ans. (2)

Sol. \(x^2 + y^2 - 16x - 20y + 164 = r^2 \)

Let \(A(8,10), R_1 = r \)

\((x-4)^2 + (y-7)^2 = 36 \)

\(B(4,7), R_2 = 6 \)

\[|R_1 - R_2| < AB < R_1 + R_2 \]

\(\Rightarrow 1 < r < 11 \)

24. Let \(S \) be the set of all triangles in the \(xy \)-plane, each having one vertex at the origin and the other two vertices lie on coordinate axes with integral coordinates. If each triangle in \(S \) has area 50 sq. units, then the number of elements in the set \(S \) is:

(1) 9
(2) 18
(3) 32
(4) 36

Ans. (4)

Sol. Let \(A(\alpha,0) \) and \(B(0,\beta) \)

be the vectors of the given triangle AOB

\(\Rightarrow |\alpha| = 100 \)

\(\Rightarrow \) Number of triangles

\(= 4 \times (\text{number of divisors of 100}) \)

\(= 4 \times 9 = 36 \)

25. The sum of the following series

\[1 + 6 + \frac{9(1^2 + 2^2 + 3^2)}{7} + \frac{12(1^2 + 2^2 + 3^2 + 4^2)}{9} \]

\[+ \frac{15(1^2 + 2^2 + \ldots + 5^2)}{11} + \ldots \] up to 15 terms, is:

(1) 7820
(2) 7830
(3) 7520
(4) 7510

Ans. (1)
26. Let a, b and c be the 7th, 11th and 13th terms respectively of a non-constant A.P. If these are also the three consecutive terms of a G.P., then \(\frac{a}{c} \) is equal to:

\[
\begin{align*}
(1) & \quad \frac{1}{2} & (2) & \quad 4 \\
(3) & \quad 2 & (4) & \quad \frac{7}{13}
\end{align*}
\]

Ans. (2)

Sol.

\[
a = A + 6d \\
b = A + 10d \\
c = A + 12d
\]

a, b, c are in G.P.

\(\Rightarrow (A + 10d)^2 = (A + 6d)(a + 12d) \)

\[
\Rightarrow \frac{A}{d} = -14
\]

\[
\begin{align*}
\frac{a}{c} & = \frac{A + 6d}{A + 12d} \\
& = \frac{6 + \frac{A}{d}}{12 + \frac{A}{d}} \\
& = \frac{6 - 14}{12 - 14} = 4
\end{align*}
\]

27. If the system of linear equations

\[
\begin{align*}
x & = -4y + 7z = g \\
3y & = 5z = h \\
-2x & = 5y - 9z = k
\end{align*}
\]

is consistent, then:

\((1) g + h + k = 0 \)

\((2) 2g + h + k = 0 \)

\((3) g + h + 2k = 0 \)

\((4) g + 2h + k = 0 \)

Ans. (2)

Sol.

\[
\begin{align*}
P_1 & = x - 4y + 7z - g = 0 \\
P_2 & = 3x - 5y - h = 0 \\
P_3 & = -2x + 5y - 9z - k = 0
\end{align*}
\]

Here \(\Delta = 0 \)

\(2P_1 + P_2 + P_3 = 0 \) when \(2g + h + k = 0 \)

28. Let \(f: [0,1] \rightarrow \mathbb{R} \) be such that \(f(xy) = f(x)f(y) \) for all \(x, y, \in [0,1] \), and \(f(0) \neq 0 \). If \(y = y(x) \) satisfies the differential equation, \(\frac{dy}{dx} = f(x) \) with \(y(0) = 1 \), then \(y \left(\frac{1}{4} \right) + y \left(\frac{3}{4} \right) \) is equal to:

\((1) 4 \quad (2) 3 \quad (3) 5 \quad (4) 2 \)

Ans. (2)

Sol.

\[
\begin{align*}
f(xy) & = f(x)f(y) \\
f(0) & = 1 \text{ as } f(0) \neq 0 \\
\Rightarrow f(x) & = 1 \\
\frac{dy}{dx} & = f(x) = 1 \\
\Rightarrow y & = x + c \\
\text{At, } x = 0, y = 1 & \Rightarrow c = 1 \\
y & = x + 1 \\
\Rightarrow y \left(\frac{1}{4} \right) + y \left(\frac{3}{4} \right) & = \frac{1}{4} + \frac{3}{4} + 1 = 3
\end{align*}
\]

29. A data consists of \(n \) observations:

\(x_1, x_2, \ldots, x_n \). If \(\sum_{i=1}^{n} (x_i + 1)^2 = 9n \) and \(\sum_{i=1}^{n} (x_i - 1)^2 = 5n \), then the standard deviation of this data is:

\((1) 5 \quad (2) \sqrt{5} \quad (3) \sqrt{7} \quad (4) 2 \)

Ans. (2)

Sol.

\[
\begin{align*}
a & = A + 6d \\
a & = A + 12d \\
\Rightarrow \frac{A}{d} & = -14
\end{align*}
\]

\[
\begin{align*}
a & = 6 + \frac{A}{d} \\
& = \frac{6 - 14}{12 - 14} = 4
\end{align*}
\]
Sol. \(\sum (x_i + 1)^2 = 9n \) \(\ldots (1) \)
\(\sum (x_i - 1)^2 = 5n \) \(\ldots (2) \)

(1) + (2) \(\Rightarrow \sum (x_i^2 + 1) = 7n \)

\[\frac{\sum x_i^2}{n} = 6 \]

(1) - (2) \(\Rightarrow 4\sum x_i = 4n \)

\[\sum x_i = n \]

\[\frac{\sum x_i^2}{n} = 1 \]

\(\Rightarrow \) variance = \(6 - 1 = 5 \)

\(\Rightarrow \) Standard deviation = \(\sqrt{5} \)

30. The number of natural numbers less than 7,000 which can be formed by using the digits 0, 1, 3, 7, 9 (repetition of digits allowed) is equal to:

(1) 250 (2) 374 (3) 372 (4) 375

Ans. (2)

Sol.

\[\begin{array}{ccc}
 a_1 & a_2 & a_3 \\
 a_4 & a_5 & a_6 \\
 \end{array} \]

Number of numbers = \(5^3 - 1 \)

\[\begin{array}{ccc}
 a_3 & a_1 & a_2 \\
 a_4 & a_5 & a_6 \\
 \end{array} \]

2 ways for \(a_4 \)

Number of numbers = \(2 \times 5^3 \)

Required number = \(5^3 + 2 \times 5^3 - 1 \)

= 374