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Work of a Force

In everyday life by the word ‘work’, we refer to a vast category of jobs. This meaning is not precise enough to

be used as a physical quantity. It was the practical need of scientists and engineers of the late 18th century at

the start of Industrial Revolution that made necessary to define work quantitatively as a physical quantity.

Physical concept of work involves a force and displacement produced.

Work of a constant Force on a body in rect i l inear mot ion

To understand concept of work, consider a block being pulled with the help of a string on frictionless horizontal

ground. Let pull F


 of the string on the box is constant in magnitude as well as direction. The vertical component

F
y
  of F


, the weight (mg) and the normal reaction N all act on the box in vertical direction but none of them can

move it unless F
y
 becomes greater than the weight (mg). Consider that F

y
 is smaller than the weight of the box.

Under this condition, the box moves along the plane only due to the horizontal component F
x
 of the force F


.

The weight mg, the normal reaction N from the ground and vertical component F
y
 all are perpendicular to the

displacement therefore have no contribution in its displacement. Therefore, work is done on the box only by

the horizontal component F
x
 of the force F


.

   

  
Fx 

  

F
y 
  

mg   

N
N 

  

F
  

 x
  P

 

 x 
  

  

y 
x 

y 
x x 

Here we must take care of one more point that is the box, which is a rigid body and undergoes translation

motion therefore, displacement of every particle of the body including that on which the force is applied are

equal. The particle of a body on which force acts is known as point of application of the force.

Now we observer that block is displaced & its speed is increased. And work W of the force F


 on the block is

proportional to the product of its component in the direction of the displacement and the magnitude of the

displacement x.

xW F x F cos x      

If we chose one unit of work as newton-meter, the constant of proportionality becomes unity and we have

W F cos x F x      
 

The work W done by the force F


 is defined as scalar product of the force F


 and displacement x
 of point of

application of the force.

Unit and Dimensions of Work of a Force

SI unit of work is “joule”, named after famous scientist James Prescott Joule. It is abbreviated by letter J.

1 joule = 1 newton × 1 meter

CGS unit of work is “erg”. Its name is derived from the Greek ergon, meaning work.

1 erg = 1 dyne × 1 centimeter

Dimensions of work are ML2T2

Methods of Work and Energy
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2 E

Examp l e

A 10 kg block placed on a rough horizontal floor is being pulled by a constant force 50 N. Coefficient of kinetic

friction between the block and the floor is 0.4. Find work done by each individual force acting on the block over

displacement of 5 m.

 F 

So lu t i on .

Forces acting on the block are its weight (mg = 100 N), mg =  100 N 

x =  5 m 

F =  50 N 

N =  100 N 

F =  40 N 

normal reaction (N = 100 N) from the ground, force of

kinetic friction (f = 40 N) and the applied force (F = 50

N) and displacement of the block are shown in the given

figure.

All these force are constant force, therefore we use equation
i fW F r   

 
.

Work done W
g
 by the gravity i.e. weight of the block W

g
 = 0 J  mg x 

 


Work done W
N
 by the normal reaction W

N
 = 0 J  N x 

 


Work done W
F
 by the applied force W

F
 = 250 J  F x

 
 

Work done W
f
 by the force of kinetic friction W

f
 = – 200 J  f x 

 


Examp l e

A 10 kg block placed on a rough horizontal floor is being pulled by a
 F 

 
37° constant force 100 N acting at angle 37°. Coefficient of kinetic friction

between the block and the floor is 0.4. Find work done by each

individual force acting on the block over displacement of 5 m.

So lu t i on .

Forces acting on the block are its weight         

N = 40

mg = 100 N F = 60 Ny

F = 100 N
37

0

x = 5m

F = 80 Nxf = 16 N

x

y

(mg = 100 N), normal reaction (N = 40

N) from the ground, force of kinetic

friction (f = 16 N) and the applied force

(F = 100 N) and displacement of the

block are shown in the given figure.

All these force are constant force, therefore we use equation
i fW F r   

 
.

Work done W
g
 by the gravity i.e. weight of the block W

g
 = 0 J  mg x 

 


Work done W
N
 by the normal reaction W

N
 = 0 J  N x 

 


Work done W
F
 by the applied force

F xW F x F x 400     
 

J

Work done W
f
 by the force of kinetic friction W

f
 = –80 J  f x 

 

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Work of a var iable Force on a body in rect i l inear mot ion

Usually a variable force does not vary appreciably during an infinitely small displacement of its point of application

and therefore can be assumed constant in that infinitely small displacement.

 
x  

x 

 
xf 

 
xi 

 
x

o
=  0 

 

Fx 

x 

 
x

f 
xi 

 
x

o
=  0 

P 
Fx 

 
dx 

 
x0 

 

Consider a box being pulled by a variable horizontal force F
x
 which is known as function of position x. We now

calculate work done by this force in moving the box from position x
i
 to x

f
. Over any infinitely small displacement

dx the force does not vary appreciably and can be assumed constant. Therefore to calculate work done dW by

the force F
x
 during infinitely small displacement dx is given by 

x xdW F .dx F dx 
 

. Integrating dW from x
i
 to x

f

we obtain work done by the force in moving the box from position x
i
 to x

f
.

f

i

x

i f xx
W F .dx  

The above equation also suggests that in rectilinear motion work done by a force equals to area under the

force-position graph and the position axis.

x 

F
x 

xf 

 
xi 

 
In the given figure is shown how a force F

x
 varies with position coordinate x. Work done by this force in moving

its point of application from position x
i
 to x

f
 equals to area of the shaded portion.

Examp l e

A force which varies with position coordinate x according to equation F
x
 = (4x+2) N. Here x is in meters.

Calculate work done by this force in carrying a particle from position x
i
 = 1 m to x

f
 = 2 m.

So lu t i on .

Using the equation 
f

i

x

i f xx
W F .dx   , we have  

2

i f 1
W 4x 2 .dx 8    J

The above problem can also be solved by using graph

Examp l e

A horizontal force F is used to pull a box placed on floor.  Variation in the force with position coordinate x

measured along the floor is shown in the graph.

 

x 
x

o
=  0 

Fx 

    

 
10 

 

F (N) 

x(m) 
5 10 

 
15 
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4 E

(a) Calculate work done by the force in moving the box from x = 0 m to x = 10 m.

(b) Calculate work done by the force in moving the box from x = 10 m to x = 15 m.

(c) Calculate work done by the force in moving the box from x = 0 m to x = 15 m.

So lu t i on .

In rectilinear motion work done by a force equals to area under the

force-position graph and the position axis

(a) 0 10
W Area of trapazium OABC 75


  J

(b) 
10 15

W Area of triangle CDE 25


    J

 
A B 

C 

D 

10 

F (N) 

x(m) 

 5 10 15 

E 

(c) 
0 15

W Area of trapazium OABC Area of triangle CDE 50


   J

Examp l e

A coiled spring with one end fixed has a realaxed length l
0
 and a spring constant k. What amount of work must

be done to stretch the spring by an amount s?

So lu t i on .

x 

 
x= 0 

 

x 

F 

 

kx 

 

In order to stretch the free end of the spring to a point x, some

agency must exert a force F, which must everywhere be equal to

spring force.

F = kx

The applied force and the spring force are shown in the adjoining

figure.

The work done W
F
 by the applied force in moving the free end of

the spring from x = 0 to x = s be

s
21

F 2

0

W F dx ks  
 

Ans .

Use of Graph.

x 

 

F 

 

s 

 
0 

 
Variation in F with extension x. 

The variation in F with extension x in the spring is linear therefore area

under the force extension graph can easily be calculated. This area equals

to the work done by the applied force. The graph showing variation in F

with x is shown in the adjoining figure.

    

s

21
F 2

0

W F dx  Area of the shaded portion ks   
 

Work of a var iable Force on a body in curvi linear translat ion mot ion
 

Path  

O 
  x

 

y 
  

 

z 
  

P    

B  

Q  

A 


F  


dr  

Till now we have learnt how to calculate work of a force in

rectilinear motion. We can extend this idea to calculate work of a

variable force on any curvilinear path. To understand this let us

consider a particle moving from point A to B. There may be

several forces acting on it but here we show only that force whose

work we want to calculate. This force may be constant or variable.

Let this force is denoted by F


. Consider an infinitely small path

length PQ. Over this infinitely small path length, the force can be

assumed constant. Work of this force F


 over this path length PQ

is given by

dW F dr 
 
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E 5

The whole path from A to B can be divided in several such infinitely small elements and work done by the force

over the whole path from A to B is sum of work done over every such infinitely small element. This we can

calculate by integration. Therefore, work done 
A B

W


 by the force F


is given by the following equation.

B

A

r

A B r
W F dr  





 

Work of a Var iable Force

For a generalization, let point A be the initial point and point B be the final point. Now we can express work

W
if

 of a force F


 when its point of application moves from position vector 
i
r


 to 
f
r


over a path by the following

equation.

f

i

r

i f r
W F dr  





 

The integration involved in the above equation must be carried over the path followed. Such kind of integration

is known as path integrals.

Work of a constant Force

In simple situations where force F


 is constant, the above equation reduces to a simple form.

   f

i

r

i f f ir
W F dr F r r F r        





     

Examp l e

Calculate work done by the force  ˆˆ ˆF 3i 2 j 4k  


N in carrying a particle from point (2 m, 1 m, 3 m) to (3

m, 6 m, 2 m).

So lu t i on .

The force F


 is a constant force, therefore we can use equation 
i fW F r   

 
.

W = F


. r


 = ˆ ˆ ˆ ˆˆ ˆ(3i 2 j 4k).(5i 5 j 5k)     = –15 J

Examp l e

A particle is shifted form point (0, 0, 1 m) to (1 m, 1 m, 2 m), under simultaneous action of several forces. Two

of the forces are  
1

ˆˆF 2i 3 j k N  


 and  
2

ˆˆ ˆF i 2 j 2k N  


. Find work done by these two forces.

So lu t i on .

Work done by a constant force equals to dot product of the force and displacement vectors.

W F r  
   1 2W F F r   

  

Substituting given values, we have

   ˆ ˆˆ ˆ ˆ ˆW 3i j k i j k 3 1 1 5          J
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6 E

Work of a force depends on frame of reference

A force does not depend on frame of reference and assumes same value in all frame of references, but

displacement depends on frame of reference and may assume different values relative to different reference

frames. Therefore, work of a force depends on choice of reference frame. For example, consider a man

holding a suitcase stands in a lift that is moving up. In the reference frame attached with the lift, the man

applies a force equal to weight of the bag but the displacement of the bag is zero, therefore work of this force

on the bag is zero. However, in a reference frame attached with the ground the bag has displacement equal to

that of the lift and the force applied by the man does a nonzero work.

Work and Energy

Suppose you have to push a heavy box on a rough horizontal floor. You apply a force on the box it moves and

you do work. If you continue pushing, after some time you get tired and become unable to maintain your speed

and eventually become unable to push the box further. You take rest and next day you can repeat the experiment

and same thing happens. Why you get tired and eventually become unable to pull the box further? The

explanation lies in fact that you have a capacity to do work, and when it is used up, you become unable to do

work further. Next day you recollect this capacity and repeat the experiment. This capacity of doing work is

known as energy. Here it comes from chemical reactions occurring with food in our body and is called chemical

energy.

Consider another experiment in which we drop a block on a nail as shown in

the figure. When set free, weight of the block accelerates it through the

distance it falls and when it strikes the nail, its motion vanishes and what

appear are the work that drives the nail, heat that increases temperature of

the surrounding, and sound that causes air molecules to oscillate. If the block

were placed on the nail and pressed hard, it would not have been so effective.

Actually, the weight and the distance through which the hammer falls on the

nail decide its effectiveness. We can explain these events by assuming that

the block possesses energy due to its position at height against gravity.

This energy is known as gravitational potential energy. When the block falls, this potential energy is converted

into another form that is energy due to motion. This energy is known as kinetic energy. Moreover, when the

block strikes the nail this kinetic energy is converted into work driving the nail, increasing temperature and

producing sound.

Potential ,  Kinet ic and Mechanical  Energy

If a material-body is moved against a force like gravitational, electrostatic, or spring, a work must be done. In

addition, if the force continues to acts even after the displacement, the work done can be recovered in form of

energy, if the body is set loose. This recoverable stored energy by virtue of position in a force field is defined as

potential energy, a name given by William Rankine.

All material bodies have energy due to their motion. This energy is known as kinetic energy, a name given by

Lord Kelvin.

These two forms of energies - the kinetic energy and the potential energy are directly connected with motion

of the body and force acting on the body respectively. They are collectively known as mechanical energy.

Other forms of Energy

Thermal energy, sound energy, chemical energy, electrical energy and nuclear energy are examples of some

other forms of energy. Actually, in very fundamental way every form of energy is either kinetic or potential in

nature. Thermal energy which is contribution of kinetic energy of chaotic motion of molecules in a body and

potential energy due to intermolecular forces within the body. Sound energy is contribution kinetic energy of

oscillating molecules and potential energy due intermolecular forces within the medium in which sound

propagates. Chemical energy is contribution of potential energy due inter-atomic forces. Electric energy is
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E 7

kinetic energy of moving charge carries in conductors. In addition, nuclear energy is contribution of electrostatic

potential energy of nucleons.

In fact, every physical phenomenon involves in some way conversion of one form of energy into other. Whenever

mechanical energy is converted into other forms or vice versa it always occurs through forces and displacements

of their point of applications i.e. work. Therefore, we can say that work is measure of transfer of mechanical

energy from one body to other. That is why the unit of energy is usually chosen equal to the unit of work.

Work-Kinet ic Energy Theorem

Consider the situation described in the figure. The body shown is in translation motion on a curvilinear path with

increasing speed. The net force acting on the body must have two components – the tangential component

necessary to increase the speed and the normal component necessary to change the direction of motion.

Applying Newton’s laws of motion in an inertial frame, we have

T T N NF ma  and F ma  

FT 

Fn 

maT 

man 

Position 1 

Position 2 

Let the body starts at position 1 with speed v
1
 and reaches position 2 with speed v

2
. If an infinitely small path

increment is represented by vector 

ds , the work done by the net force during the process is

 
2 2 2

1 2 T N T1 1 1
W F ds F F ds F ds        

   

2

1

2 v
2 21 1

1 2 T 2 2 2 11 v
W ma ds mvdv mv mv     

The terms 21
2 1mv  and 21

2 2mv  represent the kinetic energies K
1 

and K
2
 of the particle at position-1 and 2

respectively. With this information the above equation reduces to 1 2 2 1
W K K


 

The above equation expresses that the work done by all external forces acting on a body in carrying it from one

position to another equals to the change in the kinetic energy of the body between these positions. This

statement is known as the work kinetic energy theorem.

How to apply work kinetic energy theorem

The work kinetic energy theorem is deduced here for a single body moving relative to an inertial frame,

therefore it is recommended at present to use it for a single body in inertial frame. To use work kinetic energy

theorem the following steps should be followed.

• Identify the initial and final positions as position 1 and 2 and write expressions for kinetic

energies, whether known or unknown.

• Draw the free body diagram of the body at any intermediate stage between positions 1 and

2. The forces shown will help in deciding their work. Calculate work by each force and add

them to obtain work done W
12

 by all the forces.

• Use the work obtained in step 2 and kinetic energies in step 1 into 1 2 2 1W K K   .
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Examp l e

A 5kg ball when falls through a height of 20 m acquires a speed of 10 m/s. Find the work done by air

resistance.

So lu t i on .

The ball starts falling from position 1, where its speed is zero;

v 

Position 1 

Position 2 

Free body diagram of 
the ball at some 
intermediate position 

R 

mg 

 

h 

hence, kinetic energy is also zero.

K
1
 = 0 J ...(i)

During downwards motion of the ball constant gravitational force

mg acts downwards and air resistance R of unknown magnitude

acts upwards as shown in the free body diagram. The ball reaches

position 20 m below the position-1 with a speed v = 10 m/s, so the

kinetic energy of the ball at position 2 is

21
2 2K mv 250   J ...(ii)

The work done by gravity

g,1 2W mgh 1000    J ...(iii)

Denoting the work done by the air resistance R,1 2W   and making use of eq. 1, 2, and 3 in work kinetic energy

theorem, we have                  1 2 2 1 g,1 2 R,1 2 2 1 R,1 2W K K W W K K W 750J

Examp l e

A box of mass m = 10 kg is projected up an inclined plane from its foot with a speed of 20 m/s as shown in the

figure. The coefficient of friction  between the box and the plane is 0.5. Find the distance traveled by the box

on the plane before it stops first time.

 

37° 

So lu t i on .

The box starts from position 1 with speed v
1
 = 20 m/s and stops at position 2.

 

Position 1 

Position 2 

   

 

37° 

100 

Kinetic energy at position 1:  21
1 2 1K mv 2000   J

Kinetic energy at position 2:  K
2
 = 0 J

Work done by external forces as the box moves from position 1 to position 2:

1 2 g,1 2 f,1 2W W W 60x 40x 100x          J

Applying work energy theorem for the motion of the box from position 1 to position 2, we have

W
12

 = k
2
 – k

1
  – 100 x = 0 – 2000  x = 20 m
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Examp l e

A box of mass m is attached to one end of a coiled spring of force x =  0 x = xo 

constant k. The other end of the spring is fixed and the box can
slide on a rough horizontal surface, where the coefficient of friction
is . The box is held against the spring force compressing the spring
by a distance x

o
. The spring force in this position is more than force

of limiting friction. Find the speed of the box when it passes the
equilibrium position, when released.

So lu t i on .
x =  0 

 
x = xo 

 

mg 

 

N =  mg 

f =  mg 

kx 

Position 1 Position 2 

v 

Before the equilibrium position, when the box passes the position
coordinate x, forces acting on it are its weight mg, normal reaction
N from the horizontal surface, the force of kinetic friction f, and
spring force F = kx as shown in the free body diagram. Let the box
passes the equilibrium position with a speed v

o
.

Applying work energy theorem on the box when it moves from
position 1 (x

o
) to position 2 (x = 0), we have

1 2 2 1 F,1 2 f,1 2 2 1W K K W W K K       

 2 2 21 1
2 o o 2 o o o okx mgx mv 0 v kx 2 mgx       

Examp l e

 

A block of mass m is suspended from a spring of force constant k. it is held to keep the spring

in its relaxed length as shown in the figure.

(a) The applied force is decreased gradually so that the block moves downward at negligible
speed. How far below the initial position will the block stop?

(b) The applied force is removed suddenly. How far below the initial position, will the block
come to an instantaneous rest?

So lu t i on .
 

  

x =  0
 

v 1 = 0   
  

x0   
  

v2 = 0   
  

x
 kx  

  

mg  
  

Position- 1 
    

Position- 2 
  

(a) As the applied force (F) is decreased gradually, everywhere in its
downward motion the block remains in the state of translational
equilibrium and moves with negligible speed. Its weight (mg) is
balanced by the upward spring force (kx) and the applied force.
When the applied force becomes zero the spring force becomes
equal to the weight and the block stops below a distance x

o 
from

the initial position. The initial and final positions and free body
diagram of the block at any intermediate position are shown in
the adjoining figure. Applying the conditions of equilibrium, we
have

o

mg
x

k


(b) In the previous situation the applied force was decreased  

x= 0   
  

v 1   0 
  

x m   
  

v 2 

 
  0 

  

x 
   

kx
   

mg
    

F
   

gradually keeping the block everywhere in equilibrium. If the
applied force is removed suddenly, the block will accelerate
downwards. As the block moves, the increase in spring extension
increases the upward force, due to which acceleration decreases
until extension becomes x

o
. At this extension, the block will acquire

its maximum speed and it will move further downward. When
extension becomes more than x

o
 spring force becomes more

than the weight (mg) and the block decelerates and ultimately
stops at a distance x

m
 below the initial position. The initial position-

1, the final position-2, and the free body diagram of the block at
some intermediate position when spring extension is x are shown
in the adjoining figure.
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10 E

Kinetic energy in position-1 is K
1
 = 0

Kinetic energy in position-2 is K
2
 = 0

Work done 1 2W  by gravity and the spring force is 21
1 2 g,1 2 spring,1 2 m 2 mW W W mgx kx     

Using above values in the work energy theorem, we have  21
1 2 2 1 m 2 mW K K mgx kx 0     

x
m
 = 2mg/k

Examp l e

A block of mass m = 0.5 kg slides from the point A on a horizontal track with an initial sped of v
1
 = 3 m/s

towards a weightless horizontal spring of length 1 m and force constant k = 2 N/m. The part AB of the track

is frictionless and the part BD has the coefficients of static and kinetic friction as 0.22 and 0.2 respectively. If

the distance AB and BC are 2 m and 2.14 m respectively, find the total distance through which the block

moves before it comes to rest completely.  g = 10 m/s2.

D C B A 

v1 

So lu t i on

Since portion AB of the track is smooth, the block reaches B with velocity v
1
. Afterward force of kinetic friction

starts opposing its motion. As the block passes the point C the spring force also starts opposing its motion in

addition to the force of kinetic friction. The work done by these forces decrease the kinetic energy of the block

and stop the block momentarily at a distance x
m
 after the point C.

D C B A 

v2 =  0 

xm 

Kinetic energy of the block at position-1 is 21
1 2 1K mv 2.25   J.

Kinetic energy of the block at position-2 is 21
2 2 2K mv 0   J.

Work f,1 2W   done by the frictional force before the block stops is f,1 2 m mW mg(BC x ) 2.14 x     

Work s,1 2W   done by the spring force before the block stops is

mx

2 21
s,1 2 2 m m

x 0

W kxdx kx x



  

Using above information and the work energy principle, we have

2
1 2 2 1 m m mW K K 2.14 x x 2.25 x 0.1          m.

The motion of block after it stops momentarily at position-2 depends upon the condition whether the spring

force is more than or less than the force of limiting friction. If the spring force in position-2 is more than the

force of limiting friction the block will move back and if the spring force in position-2 is less than the force of

static friction the block will not move back and stop permanently.

Spring force F
s
 at position-2 is s mF kx 0.2   N.

The force of limiting friction f
m
 is m sf mg 1.1    N.

The force of limiting friction is more than the spring force therefore the block will stop at position-2 permanently.

The total distance traveled by the block = AB + BC + x
m 

=4.24 m.
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E 11

Conservat ive and Non-conservative Forces

Gravitational, electrostatic, and restoring force of a spring are some of the natural forces with a property in

common that work done by them in moving a particle from one point to another depends solely on the

locations of the initial and final points and not on the path followed irrespective of pair of points selected. On

the other hand, there are forces such as friction, whose work depends on path followed. Accordingly, forces

are divided into two categories – one whose work is path independent and other whose work is path dependant.

The forces of the former category are known as conservative forces and of the later one as non-conservative

forces.

 A force, whose finite non-zero work 
1 2

W


expended in moving a particle from a position 1 to another position

2 is independent of the path followed, is defined as a conservative force.

Consider a particle moving from position 1 to position 2 along different paths A, B, and C under the action of

a conservative force F as shown in figure. If work done by the force along path A, B, and C are 1 2,AW  , 1 2,BW 

and 1 2,CW   respectively, we have

1 2,A 1 2,B 1 2,CW W W   

If these works are positive, the work done 2 1,DW   by the same force in moving the particle from position 2 to

1 by any other path say D will have the same magnitude but negative sign. Hence, we have

1 2,A 1 2,B 1 2,C 2 1,DW W W W      

1 2,A 2 1,D 1 2,B 2 1,D 1 2,C 2 1,DW W W W W W 0          

The above equations are true for any path between any pair of points-1 and 2.

Representing the existing conservative force by F


, an infinitely path increment by dr


and integration over a

closed path by   dr


 , the above equation can be represented in an alternative form as F dr 0 
 


The equation () shows that the total work done by a conservative force  in moving a particle from position 1 to

another position 2 and moving it back to position 1 i.e. around a closed path is zero. It is used as a fundamental

property of a conservative force.

1  

2  A  

B  

C  

D  

• A conservative force must be function only of position not of velocity or time.

• All uniform and constant forces are conservative forces. Here the term uniform means same magnitude and

direction everywhere in the space and the term constant means same magnitude and direction at all instants of

time.

• All central forces are conservative forces.  A central force at any point acts always towards or away from a

fixed point and its magnitude depends on the distance from the fixed point.

• All forces, whose magnitude or direction depends on the velocity, are non-conservative. Sliding friction, which

acts in opposite direction to that of velocity, and viscous drag of fluid depends in magnitude of velocity and acts

in opposite direction to that of velocity are non-conservative.
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12 E

Potential  Energy

Consider a ball of mass m placed on the ground and someone moves it at negligible speed through a height h

above the ground as shown in figure. The ball remains in the state of equilibrium therefore the upward force F

applied on it everywhere equals to the weight (mg) of the ball. The work a b
W

 done by the applied force on the

ball is 
a bW F h mgh   


.

 

h  

 
mg 

F 

 

mg 

Configuration-a 

v 

 

Configuration-b 

FBD in upward 
Motion 

FBD in downward 
Motion 

Configuration-a 

Now if the ball is dropped from the height h it starts moving downwards due to its weight and strikes the ground

with speed v. The work 
b a

W


done by its weight during its downward motion imparts it a kinetic energy K
c
,

which is obtained by using work energy principle and the above equation as

2 21 1
b a a b 2 a 2W K K mgh mv 0 K mv mgh        

Instead of raising the ball to height h, if it were thrown upwards with a speed v it would have reached the height

h and returned to the ground with the same speed. Now if we assume a new form of energy that depends on

the separation between the ball and the ground, the above phenomena can be explained. This new form of

energy is known as potential energy of the earth-ball system. When ball moves up, irrespective of the path or

method how the ball has been moved, potential energy of the earth-ball system increases. This increase equals

to work done by applied force F in moving the ball to height h or negative of work done by gravity.  When the

ball descends, potential energy of the earth ball system decreases; and is recovered as the kinetic energy of the

ball when separation vanishes. During descend of the ball gravity does positive work, which equals to decrease

in potential energy.

Potential energy of the earth ball system is due to gravitation force and therefore is call gravitation potential

energy. Change in gravitational potential energy equals to negative of work done by gravitational force. It is

denoted by U.

In fact, when the ball is released both the ball and the earth move towards each other and acquire momenta of

equal magnitude but the mass of the earth is infinitely large as compared to that of the ball, the earth acquires

negligible kinetic energy. It is the ball, that acquires almost all the kinetic energy and therefore sometimes the

potential energy is erroneously assigned with the ball and called the potential energy of the ball. Nevertheless,

it must be kept in mind that the potential energy belongs to the entire system.

F  kx  

x= x1 

 

x  

 

x= 0  
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E 13

As another instance, consider a block of mass m placed on a smooth horizontal plane and connected to one

end of a spring of force constant k, whose other end is connected to a fixed support. Initially, when the spring

is relaxed, no net force acts on the block and it is in equilibrium at position x = 0. If the block is pushed

gradually against the spring force and moves at negligible speed without acceleration, at every position x, the

applied force F balances the spring force kx. The work done W
01

 by this force in moving the block from

position x =0 to  x = x
1 
is

1x x

21
0 1 2 1

x 0

W F dx kx






  
 

If the applied force is removed, the block moves back and reaches its initial position with a kinetic energy K
0,

which is obtained by applying work energy theorem together with the above equation.

2 21 1
1 0 0 1 0 2 2 1W K K K mv kx     

kx  

 

x= x1 

 

x= 0  

 

x  

y 

 

The above equation shows that the work done on the block by the applied force in moving it from x = 0 to x

= x
1
 is stored in the spring block system as increase in potential energy and when the block returns to its initial

position x = 0 this stored potential energy decreases and is recovered as the kinetic energy of the block. The

same result would have been obtained if the block were pulled elongating the spring and then released. The

change in potential energy of the spring block system when the spring length is increased or decreased by x

equals to negative of work done by the spring force.

 In both the above cases forces involved were conservative. In fact, work done against all conservative forces is

recoverable. With every conservative force, we can associate a potential energy, whose change equals to

negative of work done by the conservative force.  For an infinitely small change in configuration, change in

potential energy dU equals to the negative of work done dW
C
 by conservative forces.

dW = dU = – dW
C

Since a force is the interaction between two bodies, on very fundamental level potential energy is defined for

every pair of bodies interacting with conservative forces. The potential energy of a system consisting of a large

number of bodies thus will be sum of potential energies of all possible pairs of bodies constituting the system.

Because only change in potential energy has significance, we can chose potential energy of any configuration

as reference value.

Gravi tational potential energy for uni form gravi tat ional force

Near the earth surface for heights small compared to the radius of the earth, the variation in the gravitational

force between a body of mass m and the ground can be neglected. For such a system, change in gravitational

potential energy in any vertically upward displacement h of mass m is given by U=mgh and in vertical

downward displacement h is given by  U = – mgh.
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14 E

Gravitational potential  energy for non-uniform gravi tat ional force

 

r 

 

The ball at a distance r from 

the center of the earth. 

When motion of a body of mass m involves distances from the earth surface

large enough, the variation in the gravitational force between the body and

the earth cannot be neglected. For such physical situations the configuration,

when the body is at infinitely large distance from the earth center is taken as

the reference configuration and potential energy of this configuration is

arbitrarily assumed zero (U

=0).

If the body is brought at negligible speed to a distance r from infinitely large

distance from the earth center, the work done W
g
 by the gravitational force is

given by the following equation.

rr

g g

GMm
W F dr

r 

 
     
 

Negative of this work done equals to change in potential energy of the system. Denoting potential energies in

configuration of separation r and  by U
r
 and U


, we have

r g r

GMm
U U W U

r     

Potential  energy associated with spr ing force

x= 0  

x  x  

Re la xed  

Com pres s ed  

Ex tended  

The potential energy associated with a spring force of an ideal

spring when compressed or elongated by a distance x from its

natural length is defined by the following equation

21
2U kx

Examp l e

Find the gravitational potential energies in the following physical situations. Assume the ground as the reference

potential energy level.

(a) A thin rod of mass m and length L kept at angle  with one of its end touching the ground.



                     

R 

(b) A flexible rope of mass m and length L placed on a smooth hemisphere of radius R and one of the ends

of the rope is fixed at the top of the  hemisphere.

So lu t i on

In both the above situations, mass is distributed over a range of position coordinates. In such situations calculate

potential energy of an infinitely small portion of the body and integrate the expression obtained over the entire

range of position coordinates covered by the body.
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E 15

(a) Assume a small portion of length  of the rod at distance  from the

bottom end and height of the midpoint of this portion from the ground

is h. Mass of this portion is m. When  approaches to zero, the

gravitational potential energy dU of the assumed portion becomes

    
m m

dU ghd g sin d
L L



h 

The gravitational potential energy U of the rod is obtained by carrying integration of the above equation

over the entire length of the rod.



   


 
L

1
2

0

m
U g sin d mgL sin

L

(b) The gravitational potential energy dU of a small portion of length 

shown in the adjoining figure, when  approaches to zero is

2m
dU gR sin d

L
  



R 

The gravitational potential energy U of the rope is obtained by carrying integration of the above equation

over the entire length of the rope.

L
R

2 2

0

m m L
U gR sin d gR 1 cos

L L R





  
        


Conservat ion of mechanical  energy

The total potential energy of the system and the total kinetic energy of all the constituent bodies together are

known as the mechanical energy of the system. If E, K, and U respectively denote the total mechanical energy,

total kinetic energy, and the total potential energy of a system in any configuration, we have

E = K + U

Consider a system on which no external force acts and all the internal forces are conservative. If we apply

work-kinetic energy  1 2 2 1W K K    theorem, the work 
1 2

W


 will be the work done by internal conservative

forces, negative of which equals change in potential energy. Rearranging the kinetic energy and potential

energy terms, we have

1 1 2 2
E K U K U   

The above equation takes the following forms

E = K + U = constant

E = 0 K + U = 0

Above equations, express the principle of conservation of mechanical energy.

If there is no net work done by any external force or any internal non-conservative force, the total mechanical

energy of a system is conserved.

The principle of conservation of mechanical energy is developed from the work energy principle for systems

where change in configuration takes place under internal conservative forces only. Therefore, in physical

situations, where external forces or non-conservative internal forces are involved, the use of work energy

principle should be preferred.

In systems, where external forces or internal nonconservative forces do work, the net work done by these

forces becomes equal to change in the mechanical energy of the system.
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16 E

Potential  energy and the associated conservat ive force

We know how to find potential energy associated with a conservative force. Now we learn how to obtain the

conservative force if potential energy function is known. Consider work done dW by a conservative force in

moving a particle through an infinitely small path length ds


 as shown in the figure.

dU dW F ds Fds cos       
 

From the above equation, the magnitude F of the conservative force can be expressed.

dU dU
F

ds cos dr
   



If we assume an infinitely small displacement dr


 in the direction of the force, magnitude of the force is given

by the following equation.

dU
F

dr
 

Here minus sign suggest that the force acts in the direction of decreasing potential energy. Therefore if we

assume unit vector 
r

ê  in the direction of dr


, force vector F


 is given by the following equation.

r

dU
ˆF e

dr
 


Examp l e

Force between the atoms of a diatomic molecule has its origin in the interactions between the electrons and the

nuclei present in each atom. This force is conservative and associated potential energy U(r) is, to a good

approximation, represented by the Lennard – Jones potential.

12 6

o

a a
U(r ) U

r r

     
          

Here r is the distance between the two atoms and U
o
 and a are positive constants. Develop expression for the

associated force and find the equilibrium separation between the atoms.

So lu t i on .

Using equation 
dU

F
dr

  , we obtain the expression for the force

13 7

06U a a
F 2

a r r

     
          

At equilibrium the force must be zero. Therefore the equilibrium separation r
o
 is

1
6

or 2 a
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Potential  energy and nature of equi l ibr ium

The above equation suggests that on every location where the potential energy function assumes a minimum or

a maximum value or in every region where the potential energy function assumes a constant value, the

associated conservative force becomes zero and a body under the action of only this conservative force must be

in the state of equilibrium. Different status of potential energy function in the state of equilibrium suggests us to

define three different types of equilibriums – the stable, unstable and neutral equilibrium.

The state of stable and unstable equilibrium is associated with a

Force  is  nega t ive  o f the  s lope o f the  

po ten t ia l  ene rg y  funct ion . 

r 

F 

r 

U 

r1 r2 r3 

r1 r2 r3 

0 

point location, where the potential energy function assumes a

minimum and maximum value respectively, and the neutral

equilibrium is associated with region of space, where the potential

energy function assumes a constant value.

For the sake of simplicity, consider a one dimensional potential

energy function U of a central force F. Here r is the radial coordinate

of a particle. The central force F experienced by the particle equals

to the negative of the slope of the potential energy function.

Variation in the force with r is also shown in the figure.

At locations 
1

r r , 
2

r r , and in the region 
3

r r , where potential

energy function assumes a minimum, a maximum, and a constant

value respectively, the force becomes zero and the particle is in the

state of equilibrium.

Stab le Equi l ibr ium.

At r = r
1 
the potential energy function is a minima and the force on either side acts towards the point r = r

1
. If

the particle is displaced on either side and released, the force tries to restore it at r = r
1
. At this location the

particle is in the state of stable equilibrium. The dip in the potential energy curve at the location of stable

equilibrium is known as potential well. A particle when disturbed from the state of stable within the potential

well starts oscillations about the location of stable equilibrium. At the locations of stable equilibrium we have

U
F(r ) 0

r


  


; and 

F
0

r





; and  






2

2

U
0

r

Unstable Equi l ibr ium.

At r = r
2
 the potential energy function is a maxima, the force acts away from the point r = r

2
. If the particle is

displaces slightly on either side, it will not return to the location r = r
2
. At this location, the particle is in the state

of unstable equilibrium. At the locations of unstable equilibrium we have

U
F(r ) 0

r


  


 therefore 

F
0

r





; and 






2

2

U
0

r

Neutra l Equi l ibr ium.

In the region r  r
3
, the potential energy function is constant and the force is zero everywhere. In this region, the

particle is in the state of neutral equilibrium. At the locations of neutral equilibrium we have

U
F(r ) 0

r


  


 therefore 

F
0

r





 and 

2

2

U
0

r





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P O W E R

When we purchase a car or jeep we are interested in the horsepower of its engine. We know that

usually an engine with large horsepower is most effective in accelerating the automobile.

In many cases it is useful to know not just the total amount of work being done, but how fast the

work is done. We define power as the rate at which work is being done.

Average Power
Work done

Time taken to do work
 

Total change in kinetic energy

Total change in time

If W is the amount of work done in the time interval t. Then 
W

P
t





=

2 1

2 1

W W

t t





When work is measured in joules and t is in seconds, the unit for power is the joule per second, which

is called watt. For motors and engines, power is usually measured in horsepower, where horsepower

is 1 hp = 746 W. The definition of power is applicable to all types of work like mechanical, electrical,

thermal.

Instanteneous power 
dW F.dr

P F.v
dt dt

  

   

Where v is the instantaneous velocity of the particle and dot product is used as only that component

of force will contribute to power which is acting in the direction of instantaneous velocity.

• Power is a scalar quantity with dimension M1L2T–3

• SI unit of power is J/s or watt

• 1 horsepower = 746 watt

Examp l e

A vehicle of mass m starts moving such that its speed v varies with distance traveled s according to the law

v k s , where k is a positive constant. Deduce a relation to express the instantaneous power delivered by its

engine.

So lu t i on

Let the particle is moving on a curvilinear path. When it has traveled a distance s, the force F acting on it and

its speed v are shown in the adjoining figure.

F 

FT 

FN 

m 

v 

s 

 

Instantaneous power delivered by the engine:
T N T TP F.v (F F ) v F v ma v     

   

Tangential acceleration of the vehicle:
2

T

dv k
a v

ds 2
 

From above equations, we have
3mk

P s
2





JEE-Physics

n
o
d
e6

\
E_

N
O

D
E
6
 (E

)\
D

a
ta

\
2
0
1
4
\
K

o
ta

\
JE

E-
A

d
va

n
ce

d
\
S
M

P\
Ph

y\
W

o
rk

 P
o
w

er
 E

ne
rg

y\
E
n
g
\
Th

eo
ry

.p
6
5

E 19

CIRCULAR MOTION IN VERTICAL PLANE

Suppose a particle of mass m is attached to an inextensible light string of length R. The particle is
moving in a vertical circle of radius R about a fixed point O. It is imparted a velocity u in horizontal
direction at lowest point A. Let v be its velocity at point P of the circle as shown in figure. Here,
h = R (1 – cos) ...(i)

From conservation of mechanical energy

1

2
m(u2 – v2)=mgh   v2 = u2–2gh ....(ii)



 mgcos

mgsin mg

T
O

A
PThe necessary centripetal force is provided by the resultant of tension

T and mg cos

T – mg cos = 
2mv

R
 ...(iii)

Since speed of the particle decreases with height, hence tension is maximum at the bottom, where cos=1 (as =00)

  T
max

=
2mv

R
+mg; T

min
 =

2mv

R


– mg at the top. Here, v' = speed of the particle at the top.

Condit ion of Looping the Loop  u 5gR

The particle will complete the circle if the string does not slack even at the highest point     . Thus, tension

in the string should be greater than or equal to zero (T  0) at =. In critical case substituting T=0 and   

in Eq. (iii), we get mg= 
2
minmv

R
  v

min
 = gR (at highest point)

Substituting     in Eq. (i), Therefore, from Eq. (ii)

P

u
A

T=0

T=6mg

v =min

u =min

gR

5gR

2 2
min minu v 2gh  gR 2g(2R ) 5gR     u

min
 = 5gR

Thus, if u 5gR , the particle will complete the circle. At u = 5gR ,

velocity at highest point is v = gR  and tension in the string is zero.

Substituting 00   and v= 5gR  in Eq. (iii), we get T =6 mg or in the critical condition tension in the string

at lowest position is 6 mg. This is shown in figure.  If u < 5gR , following two cases are possible.

Condit ion of  Leaving the Circ le  2gR u 5gR 

If u < 5gR , the tension in the string will become zero before reaching the highest point. From Eq. (iii), tension

in the string becomes zero (T=0) where, 

2v
cos

Rg


     

22gh u
cos

Rg


 

Substituting, this value of cos   in Eq. (i), we get 

22gh u

Rg


=1 – 

h

R
  

2u Rg
h

3g


  = h

1
 (say) .....(iv)
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or we can say that at height h
1
 tension in the string becomes zero. Further, if u < 5gR , velocity of the particle

becomes zero when 0 = u2 – 2gh  h = 

2u

2g
=h

2
(say)...(v) i.e., at height h

2
 velocity of particle becomes zero.

Now, the particle will leave the circle if tension in the string becomes zero but velocity is not zero. or T = 0

but v  0. This is possible only when h
1
 < h

2

 

2u Rg

3g


 < 

2u

2g
  2u2 + 2Rg < 3u2 u2 > 2Rg u > 2Rg

P

u
A

T = 0
v 0


O

R

h > R

Therefore, if 2gR  < u < 5gR , the particle leaves the circle.

From Eq. (iv), we can see that h > R if u2 > 2gR. Thus, the particle, will leave

the circle when h > R or 900 <  < 1800. This situation is shown in the figure

2gR < u < 5gR  or 900 <  < 1800

Note : After leaving the circle, the particle will follow a parabolic path.

Condit ion of  Osci l lat ion  0 < u 2 gR

The particle will oscillate if velocity of the particle becomes zero but tension in the string is not zero or

v = 0, but T 0 . This is possible when  h
2
 < h

1

 

2u

2g
< 

2u Rg

3g


3u2 < 2u2 + 2Rg  u2 < 2Rg   u < 2Rg

u

v = 0
T 0

h R

Moreover, if h
1
 = h

2
, u= 2Rg  and tension and velocity both becomes zeroo

simultaneously. Further, from Eq. (iv), we can see that h  R if u  2Rg .

Thus, for 0 < u 2gR , particle oscillates in lower half of the circle (00 <  90°)

This situation is shown in the figure. 0 u 2gR   or 0°<  90°

Examp l e

Calculate following for shown situation :–

(a) Speed at D  (b) Normal reaction at D  (c) Height H

So lu t i on

(a) v
D

2 = v
C

2 – 2gR = 5gR  v
D
 = 5gR

(b) mg + N
D
 = 

2
Dmv

R
 N

D
 = 

m(5gR )
mg

R
  = 4mg

(c) by energy conservation between point A & C

mgH = 
2
C

1
mv mgR

2
 = 2

D

1
mv mg2R

2
=  

1
m(5gR )

2
 + mg2R = 

9
mgR

2
 H = 

9
R

2
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Examp l e

A stone of mass 1 kg tied to a light string of length  = 
10

3
m is whirling in a circular path in vertical plane.

If the ratio of the maximum to minimum tension in the string is 4, find the speed of the stone at the lowest
and highest points

So lu t i on

 
max

min

T
4

T
   

2

2
p

mv
mg

4
mv

mg














2

2
p

v g

v g




 

  = 4



v

vP

We know 2 2
pv v 4g     

2
P
2
P

v 5g
4

v g









  3v

P
2 = 9g

 v
P
 = 3g  = 

10
3 10

3
   = 10 ms–1   v


 = 7g  = 

10
7 10

3
   = 15.2 ms–1

T = (mg + ma) +2m(g+a) (1–cos  ) = m(g+a) (3 – 2cos  )

Ex amp l e

A heavy particle hanging from a fixed point by a light inextensible string of length  , is projected horizontally

with speed  g . Find the speed of the particle and the inclination of the string to the vertical at the instant

of the motion when the tension in the string is equal to the weight of the particle.

So lu t i on

Let tension in the string becomes equal to the weight of the particle when particle reaches the point B and

deflection of the string from vertical is  . Resolving mg along the string and perpendicular to the string, we

get net radial force on the particle at B i.e.

F
R
 = T – mg cos  ....(i)

If v
B
 be the speed of the particle at B, then



 mgcos

mgsin mg

T
O

A
B

F
R
 = 

2
Bmv


....(ii)

From (i) and (ii), we get, T – mg cos   = 
2
Bmv


....(iii)

Since at B, T = mg     mg  1 cos   = 
2
Bmv


   2

Bv g 1 cos    ...(iv)

Applying conservation of mechanical energy of the particle at point A and B, we have

1

2
mv

A
2 = mg  (1–cos  ) + 

2
B

1
mv

2
; where v

A
 = g  and v

B
 =  g 1 cos 

 g 2g    1 cos   + g  (1–cos  )   cos =
2

3
 

1 2
cos

3
  

    

Putting the value of cos   in equation (iv), we get : v
B
 = 

g

3


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Example #1

When a conservative force does positive work on a body, then

(A) its potential energy must increase. (B) its potential energy must decrease.

(C) its kinetic energy must increase. (D) its total energy must decrease.

So lu t i on Ans. (B)

Work done by conservative force = – U = positive U

Example #2

A box of mass m is initially at rest on a horizontal surface. A constant horizontal force of mg/2 is applied to the

box directed to the right. The coefficient of friction of the surface changes with the distance pushed as  = 0x

where x is the distance from the initial location. For what distance is the box pushed until it comes to rest again?

(A) 
0

2

 (B) 
0

1

 (C) 
0

1

2 (D) 
0

1

4

So lu t i on                  Ans. (B)

Net change in kinetic energy = 0  net work W = 0 N

F(mg/2)f= N

mg

x

0

00

mg 1
W dW Fdx Ndx x mg xdx 0 x

2
         

   

Example #3

A car is moving along a hilly road as shown (side view). The coefficient of static friction between the tyres and

pavement is constant and the car maintains a steady speed. If, at one of the points shown the driver applies the

brakes as hard as possible without making the tyres slip, the magnitude of the frictional force immediately after

the brakes are applied will be maximum if the car was at

B

C

A

(A) point A (B) point B (C) point C     (D) friction force same for positions A, B and C

So lu t i on Ans. (C)

N N

mg mg

at A & B

v /R
2

at C

v /R
2

At A & B, N = mg– mv2/R & at C, N = mg + mv2/R   fmax = sN maximum for C

SOME WORKED OUT EXAMPLES
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Example #4

One end of a light rope is tied directly to the ceiling. A man of mass M initially   at rest on the ground starts climbing

the rope hand over hand upto a height . From the time he starts at rest on the ground to the time he is hanging

at rest at a height , how much work was done on the man by the rope?



(A) 0 (B) Mg

(C) – Mg (D) It depends on how fast the man goes up.

So lu t i on Ans. (B)

Total work done on man = 0 Work done by string = – work done by gravity = –(– Mg) = Mg

Example #5

Consider a roller coaster with a circular loop. A roller coaster car starts from rest from the top of a hill which is

5 m higher than the top of the loop. It rolls down the hill and through the loop. What must the radius of the loop

be so that the passengers of the car will feel at highest point, as if they have their normal weight?

5m

(A) 5 m (B) 10 m (C) 15 m (D) 20 m

So lu t i on Ans. (A)

According to mechanical energy conservation between A and B

  2 21
mg 5 O mv v 10g

2
    ...(i)

5mB

MgN

V
GP =0

A

According to centripetal force equation

2mv
N mg

r
   for N = mg; 

2mv
2mg

r
  

2v 10g
r 5m

2g 2g
  

Example #6

A pendulum bob of mass m is suspended at rest. A cosntant horiozntal force F = mg/2 starts acting on it. The

maximum angular deflection of the string is

\\\\\\\\\\\\\\\\

Fm



(A) 90° (B) 53° (C) 37° (D) 60°
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So lu t i on Ans. (C)

Let at angular deflection  its velocity be v then by work energy theorem  W= KE

 21
mv mg cos F sin

2
       

\\\\\\\\\\\\\\\\

c
os
 



sin

v

At maximum angular deflection, v = 0

 0 = – mg (1–cos) + 
mg

2
sin2–2cos = sin 4 + 4 cos2 – 8 cos = sin2 = 1– cos2

5 cos2 – 8 cos + 3 = 0 5 cos2 – 5 cos – 3cos + 3 = 0

5cos (cos–1) – 3 (cos–1) = 0 (5cos–3) (cos–1) =0

cos = 
3

5
 or cos =1  = 37° or   = 0°

Example #7

The potential energy for the force ˆˆ ˆF yzi xzj xyk  


, if the zero of the potential energy is to be chosen at the

point (2, 2, 2), is

(A) 8 + xyz (B) 8 – xyz (C) 4–xyz (D) 4 + xyz

So lu t i on Ans. (B)

U U U ˆˆ ˆF i j k
x y z

  
   

  


      

U U U
yz, xz, xy

x y z

  
      

  

Therefore U = – xyz + C where C = constant As at (2, 2, 2), U =0 so C =8

O R

Objective question approach : Check that U =0 at (2, 2, 2)

Example #8

A particle is projected along the inner surface of a smooth vertical circle of radius R, its velocity at the lowest point

being 
1

95Rg
5

. It will leave the circle at an angular distance.... from the highest point

(A) 37° (B) 53° (C) 60° (D) 30°

So lu t i on Ans. (B)

By conservation of mechanical energy [ between point A and B]

 2 21 1
mu mgR 1 cos mv

2 2
   

N=0

R

R

u
A

B

mg

v



 
2

1 1 1
m 95Rg mgR 1 cos mgR cos

2 5 2

 
      

95 45
2 2 cos cos 3 cos

25 25
        

15 3
cos 53

25 5
       
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Example #9

The upper half of an inclined plane with inclination  is perfectly smooth while the lower half is rough. A body starting

from rest at the top will again come to rest at the bottom if the coefficient of friction for the lower half is given

by

(A) tan (B) 2tan (C) 2cos (D) 2sin

So lu t i on Ans. (B)

Refer to figure. In the journey over the upper half of incline, v2 – u2 = 2 as

v2 – 0 = 2 (gsin) 
s

2
 = gsin.s



s/2

s/2

In the journey over the lower half of incline v2 – u2 = 2 as

0 – gsin.s = 2 g(sin – cos)
s

2
–sin = sin – cos 

2 sin
2 tan

cos


   



Example #10

Simple pendulums P1 and P2 have lengths 1 = 80 cm and 2 = 100 cm respectively. The bobs are of masses m1

and m2. Initially both are at rest in equilibrium position. If each of the bobs is given a displacement of 2 cm, the

work done is W1 and W2 respectively. Then,

(A) W1 > W2 if m1 = m2 (B) W1 < W2 if m1 = m2 (C) W1 =W2 if 
1

2

m 5

m 4
 (D) W1=W2 if 

1

2

m 4

m 5


So lu t i on Ans. (A,D)

With usual notation, the height through which the bob falls is  
2

2h 1 cos 2 sin 2
2 4

   
          
    since  is

small. Therefore, we can write 
  

    
 

 

22 2a a
h

2 2 2
.  where a = amplitude

Thus, the work done W= P.E. = mgh = 
2mga 1

W
2

 
 

Example #11

A body of mass m is slowly halved up the rough hill by a force F at which each point is directed along a tangent

to the hill.

h

x

F

Work done by the force

(A) independent of shape of trajectory. (B) depends upon x.

(C) depends upon h. (D) depends upon coefficient of friction ()
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So lu t i on Ans. (ABCD)

Work done by the force = Work done against gravity (Wg) + work done against friction (Wf)

=         gW mg sin ds mg ds sin mg dh mgh

and             fW mg cos ds mg ds cos mg dx mgx

F

dh

dx



Example #12

The kinetic energy of a particle continuously increase with time. Then

(A) the magnitude of its linear momentum is increasing continuously.

(B) its height above the ground must continuously decrease.

(C) the work done by all forces acting on the particle must be positive.

(D) the resultant force on the particle must be parallel to the velocity at all times.

So lu t i on Ans. (A, C)

For (A) : p 2mK  if K  then p 

For (B) : Its height may  or 

For (C) : W = K if K = positive then W = positive

For (D) : The resultant force on the particle must be at an angle less than 90° all times

Example #13

A particle moves in one dimensional field with total mechanical energy E. If potential energy of particle is U(x),

then

(A) Particle has zero speed where U(x) = E (B) Particle has zero acceleration where U(x) = E

(C) Particle has zero velocity where 
 dU x

0
dx

 (D) Particle has zero acceleration where 
 dU x

0
dx



So lu t i on Ans. (A,D)

Mechanical energy = kinetic energy + potential energy    E = K + U(x) where K = 
1

2
mv2

If K = 0 then E = U(x)

If F = 0 then 
   dU x dU x

F 0 0
dx dx

    
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Example #14

A spring block system is placed on a rough horizontal surface having coefficient of friction . The spring is given

initial elongation 
3 mg

k


 and the block is released from rest. For the subsequent motion

(A) Initial acceleration of block is 2g.

(B) Maximum compression in spring is 
mg

k


.

(C) Minimum compression in spring is zero.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\

\\\
\\\

\\\
\\\

\\\
\\\

\\\\

m
k

(D) Maximum speed of the block is 
m

2 g
k



So lu t i on Ans. (A,B,C,D)

For (A) : Initial acceleration = 

3 mg
k mg

k
2 g

m

 
   

 

For (B,C) : 

2µmg

k

µmg

kx=0 v=0

F  = 0net

Therefore maximum compresion = 
2 mg mg mg

k k k

  
   and minimum compression = 0

For (D) : At maximum speed Fnet = 0 so by using work energy therorem

2 2

21 1 3 mg 1 mg 2 mg
mv k k mg

2 2 k 2 k k

       
             

 v = 2 g m / k

Example #15 to 17

A particle of mass m = 1 kg is moving along y-axis and a single conservative force F(y) acts on it. The potential

energy of particle is given by U(y) = (y2–6y+14) J where y is in meters. At y = 3 m the particle has kinetic energy

of 15 J.

1 5 . The total mechanical energy of the particle is

(A) 15 J (B) 5 J (C) 20 J (D) can't be determined

1 6 . The maximum speed of the particle is

(A) 5 m/s (B) 30  m/s (C) 40  m/s (D) 10  m/s

1 7 . The largest value of y (position of particle) is

(A) 3+ 5 (B) 3– 5 (C) 3+ 15 (D) 6+ 15
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So lu t i on

1 5 . Ans. (C)

Total mechanical energy = kinet ic energy + potential energy = 15+ [32–6(3)+14] = 15 +5 = 20 J

1 6 . Ans. (B)

At maximum speed (i.e. maximum kinetic energy), potential energy is minimum U = y2 – 6y + 14 = 5 + (y–3)2

which is minimum at y=3 m so Umin = 5J

Therefore Kmax = 20 – 5 = 15 J
2

max max

1
mv 15 v 30  m/s

2
   

1 7 . Ans. (C)

For particle K  0 E – U  0  20 – (5+(y–3)2]  0 (y–3)2 15 y–3 15  y  3 + 15

Example #18 to 20

A rigid rod of length  and negligible mass has a ball with mass m attached to one end and its other end fixed,
to form a pendulum as shown in figure. The pendulum is inverted, with the rod straight up, and then released.

\\\\\\\\\\\\\\\\\\\\\\\



m

1 8 . At the lowest point of trajectory, what is the ball's speed?

(A) 2g (B) 4g (C) 2 2g (D) 8g

1 9 . What is the tension in the rod at the lowest point of trajectory of ball?

(A) 6 mg (B) 3 mg (C) 4 mg (D) 5 mg

2 0 . Now, if the pendulum is released from rest from a horizontal position. At what angle from the vertical does the
tension in the rod equal to the weight of the ball?

(A) 
1 2

cos
3

  
   (B) 

1 1
cos

3
  
   (C) 

1 1
cos

2
  
   (D) 

1 1
cos

4
  
  

So lu t i on

1 8 . Ans. (B)

From COME : 
21

2mg mv v 4g 2 g
2

     

1 9 . Ans. (D)

At the lowest point  
2mv m

T mg T mg 4g 5mg     
 
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2 0 . Ans. (B)

Force equation 
2mv

T mg cos  


Energy equation 
21

mg cos mv
2

 

cos
T=mg






mg
v

Therefore 
1

mg mg cos 2mg cos 3 cos 1 cos
3

         

Example #21

AB is a quarter of a smooth horizontal circular track of radius R. A particle P of mass m moves along the track

from A to B under the action of following forces :

1F


 = F (always towards y-axis)

2F


 = F (always towards point B)
F1 F2

F3

F4

RO B

R

A

y

x

P3F


 = F (always along the tangent to path AB)

4F


=F (always towards x-axis)

Column I Column II

(A) Work done by 
1F


(P) 2 FR

(B) Work done by 
2F


(Q)  
1

2
FR

(C) Work done by 
3F


(R) FR

(D) Work done by 
4F


(S)
FR

2



(T)
2FR



So lu t i on Ans. (A)  (R); (B)  (P); (C)  (S); (D)  (R)

For (A) : Work done by 


1F FR

For (B) :       
            

 
dW F.ds FRd cos 45 FR 45 d

2 2
F2

d

R 90°

2






    

            
/2/ 4

00

W FR cos 45 2FR sin 45 2FR
2 2

For (C) : 
  

    
  R FR

W F.ds F
2 2

For (D) :    W F.ds F R FR  
 
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Example #22

A block of mass 2 kg is dragged by a force of 20 N on a smooth horizontal surface. It is observed from three

reference frames ground, observer A and observer B. Observer A is moving with constant velocity of 10 m/s and

B is moving with constant acceleration of 10 m/s2. The observer B and block starts simultaneously at t =0.

B A

10m/s10m/s2

2kg 20N

Column I Column II

(A) Work energy theorem is applicable in (P) 100 J

(B) Work done on block in 1s as observed by ground is (Q) – 100 J

(C) Work done on block is 1 s as observed by observer A is (R) zero

(D) Work done on block in 1 s as observed by observer B is (S) only ground & A

(T) all frames ground, A & B

So lu t i on Ans. (A)  (T); (B)  (P); (C)  (Q); (D)  (R)

For (A) : Work energy theorem is applicable in all reference frames.

For (B) : w.r.t. ground : At t =0, u =0 and t = 1 s, v = at = 
20

2

 
   (1) = 10 m/s

Work done = change in kinetic energy = 
1

2
(2) (10)2 – 

1

2
(2) (0)2 = 100 J

For (C) : w.r.t. observer A : Init ial velocity = 0 – 10 = – 10 m/s, Final velocity = 10 – 10 = 0

Work done = 
1

2
(2) (0)2 –

1

2
(2) (–10)2 = – 100 J

For (D) : w.r.t. observer B : Init ial velocity = 0 – 0 = 0

Final velocity = 10 – 10 = 0; Work done = 0


